

Nuclear Propulsion Concepts

■ Nuclear Thermal and Nuclear Electric

- Nuclear Thermal Rockets (NTR) typically flow hydrogen gas through the reactor core to heat the gas which provides thrust by expanding through a nozzle. This system provides high thrust with lsp > 800 s.
- Nuclear Electric Propulsion (NEP) typically uses a nuclear reactor to generate electric power (similar to a submarine) which is used to power an electric propulsion system. Low thrust with lsp >> 5000 s.

■ Why sould we consider Nuclear Propulsion????

- Chemical propulsion systems have been pushed to limit.
 Maybe another few % left.
- Nuclear could put us on a new growth path with a factor of 1,000,000 improvement in specific energy, a factor of 10 to 100 in ISP.
- In the event the nation decides to pursue this, to be at least a little prepared, a small amount of research now is appropriate.

■ Some Nuclear Concerns

- Safety If we cannot make it "Air Line Safe" we will not propose to build it
- Testing nuclear systems has been too expensive. Low cost testing is needed.
- Nuclear weapons technology proliferation -
 - Can we separate propulsion research and weapons?
 - Some old nuclear propulsion concepts definitely cross the line!!

Advanced Nuclear Propulsion Concepts

■ High Temperature Nuclear Fuels

- Solid core nuclear reactor performance is limited by the melting point of the nuclear fuel
- Exotic alloys, sometimes called ribbon fuels, developed by Russia and further developed by the University of Florida, may allow lsp increase from 800 sec. to greater than 1000 sec.

LOX Augmented NTR

- To assist in escaping the earth's gravitation well liquid oxygen can be injected into the NTR nozzle to increase thrust at the expense of Isp.
- When the gasses in the nozzle expand and the temperature falls below the molecular dissociation level the oxygen will chemically react with the hydrogen to maintain pressure a little longer.

Processing of a Nuclear Fuel Sample

(U,Zr,Nb)C Sample During Sintering

Advanced Nuclear Propulsion Concepts Cont'd

■ Gas Core NTR

- Hydrogen gas heated to these very high temperatures may provide Isp > 3000 sec.
- Los Alamos and Brooklyn Polytechnic Institute have mathematically simulated confinement flow patterns that retain the uranium fuel while releasing the high pressure hydrogen through the nozzle.

■ Pulsed Nuclear Reactors

- Reactors that operate in a pulsed mode have been developed by Los Alamos and Sandia for studying the effects of of nuclear weapons bursts.
- The very high temperatures of the pulse could, in principle, provide very high lsp, but the low pulse repetition frequency may limit its use for propulsion

Advanced Nuclear Propulsion Concepts

Air & Space/Smithsonian

April/May 1990

■ Pluto - Nuclear Ramjet - ABCC

- During the "60s Livermore successfully demonstrated a proof of concept nuclear powered ramjet that traveled on a track in the Nevada Test Site. The air heat exchanger material was developed by the Coor's brewery.
- This project was discontinued after successfully completing all their development objectives.
- An Atomic Based Combined Cycle concept might make an impressive vehicle for the next generation of planetary airplanes, perhaps flying through Jupiter's atmosphere for several years.

Advanced Nuclear Propulsion Concepts Cont'd

Orion - A Pulsed Nuclear Concept

- Also during the '60s Los Alamos and others simulated a launch vehicle propulsion concept that dropped small nuclear bombs behind a blast shield. Detonation forces on the shield provided a pulsed propulsion. Large shock absorbers were required to control gravity levels, peak gee loads.
- Isp > 10,000 seconds can be achieved.
- · May require treaty renegotiation.
- · Potential environmental issues for ETO applications.
- Some research is being conducted by the University of Alabama in Huntsville for deep space applications utilizing components that are not and cannot be assembled into nuclear weapons.
- The additional radiation added to the interplanetary environment probably could not be detected.
- A concept with this performance can reduce trip times enough to enable human missions to the moons of the Jupiter or beyond.
- A recent variation is a concept called Medusa which uses a sail to capture the nuclear blast wind.

Advanced Nuclear Propulsion Concepts

■ An Aneutronic Nuclear Ramjet Concept

- For this concept the nuclear fuel is Hafnium, rather than uranium or plutonium. Hafnium is a gamma ray emitter that is susceptible to stimulated emission by soft X-rays.
- The concept vehicle is envisioned to:
 - Take off using hydrocarbon fueled jet engines,
 - Start a nuclear rocket in flight to get through the pinch,
 - Transition to nuclear ramjet, and then
 - Transition to nuclear rocket when leaving the atmosphere.
 - Orbit and de-orbit maneuvers are performed with the nuclear rocket.
 - After reentry a short cruise can be sustained with the hydrocarbon engines, and aerial refueling can extend this range.
 - The vehicle lands on a runway after the reactor has cooled sufficiently.
- The reactor core is radioactive prior to launch before the nuclear engines have been turned on and therefore must be shielded.
- This radiation is gamma rays, which do not cause the vehicle structure to become radioactive like neutrons would.
- The hydrocarbon fuel can contribute to the shielding. The crew compartments, and perhaps the cargo, could be immersed in the fuel tanks
- The residual nuclear fuel can be removed and "burned" in an X-ray chamber to decontaminate it if it is impractical to recycle it.
- In the event of a catastrophe such that the nuclear fuel is dispersed there is a problem since the half-life is 31 years.
- Other alternate nuclear reactions may be possible.

